Comparison of phase-shifting techniques for in vivo full-range, high-speed Fourier-domain optical coherence tomography.

نویسندگان

  • Dae Yu Kim
  • John S Werner
  • Robert J Zawadzki
چکیده

Single spectrometer-based complex conjugate artifact removal methods are evaluated for in vivo imaging with complementary metal-oxide semiconductor line scan camera based high-speed Fourier-domain optical coherence tomography (FD-OCT) at 100,000 axial scans per second. Performance of three different phase-shifting methods with the same OCT engine is evaluated using modified data acquisition schemes, depending on the requirements of each phase-shifting technique. The suppression ratio of complex conjugate artifact images using a paperboard is assessed for all tested methods. Several other characteristics, including a list of additional hardware requirements (beyond standard FD-OCT components) and data acquisition schemes for each of the methods is presented. In vivo full-range images of human fingerpad and nail are shown and compared with standard FD-OCT images. Additionally, a complex-conjugate-free human retinal volume acquired at the speed of 100,000 A-scans/s is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One-shot-phase-shifting Fourier domain optical coherence tomography by reference wavefront tilting.

A novel optical scheme for a phase shifting method of Fourier domain optical coherence tomography is presented. With this method we avoid a mechanical scan for phase shifting (mechanical M-scan) by using a reference beam with tilted wavefront. The principle of this system is confirmed with a simple mirror object. This method is applied on a biological sample and used to investigate a porcine an...

متن کامل

Real-time in vivo computed optical interferometric tomography

High-resolution real-time tomography of scattering tissues is important for many areas of medicine and biology1-6. However, the compromise between transverse resolution and depth-of-field in addition to low sensitivity deep in tissue continue to impede progress towards cellular-level volumetric tomography. Computed imaging has the potential to solve these long-standing limitations. Interferomet...

متن کامل

In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s.

In vivo full-field (FF) optical coherence tomography (OCT) images of human retina are presented by using a rapidly tunable laser source in combination with an ultra-high-speed camera. Fourier-domain FF-OCT provided a way to increase the speed of retinal imaging by parallel acquisition of A-scans. Reduced contrast caused by cross talk was observed only below the retinal pigment epithelium. With ...

متن کامل

Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning.

We introduce a simple and cheap method for phase-shifting Fourier domain optical coherence tomography (FDOCT) that does not need additional devices and can easily be implemented. A small beam offset at the fast beam-scanning mirror introduces a causal phase shift, which can be used for B-scan-based complex image reconstruction. We derive the conditions for optimal conjugate suppression and demo...

متن کامل

Quantitative phase imaging with spectral-domain optical coherence phase microscopy

Spectral domain optical coherence phase microscopy provides high resolution quantitative phase measurement. Using a common path Fourier domain optical coherence tomography system, this technique is capable of excellent phase stability of less than 1 milliradian and high imaging speed of up to several hundred KHz Aline rate. The limitation of 2π ambiguity restriction can be overcome by the use o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 15 5  شماره 

صفحات  -

تاریخ انتشار 2010